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Mass dependence of isotope self-diffusion by molecular dynamics

Maria J. Nuevo,* Juan J. Morales,* and David M. Heyes
Department of Chemistry, University of Surrey, Guildford GU2 5XH, England
(Received 12 August 1994)

The mass and system size dependence of the self-diffusion coefficient of a single solute particle in a
Weeks-Chandler-Anderson and Lennard-Jones liquid have been determined for a wide range of solute
particle mass mp and the number of particles of the host fluid N —1. The self-diffusion coefficient has
been calculated using the mean squared displacements, the velocity autocorrelation function of the parti-
cles, and the Gaussian memory function method. From the computer simulation results, we conclude
that only for Brownian particles with a mass less than a critical value (ca. mp/m <25, where m is the
mass of the solvent molecule) and very small systems (ca. N <500) is it possible to detect a mass and
system-size dependence of the self-diffusion coefficient. For more massive Brownian particles and larger
systems, the self-diffusion coefficient of the Brownian particle reaches a thermodynamic limit, neither de-
pending on its mass nor on the number of particles in the periodic solvent system. The results obtained
suggest that the self-diffusion coefficient for sufficiently large isotope masses should only depend on the
temperature and number density of the fluid particles.

PACS number(s): 66.10. —x, 82.20.Tr, 82.20.Wt

I. INTRODUCTION

The mass dependence of the self-diffusion coefficient of
both species in a binary fluid mixture has been the subject
of numerous molecular dynamics simulation studies. For
example, hard disks [1] and hard spheres [2], Weeks-
Chandler-Anderson (WCA) and Lennard-Jones (LJ)
liquids [3] have also been studied. However, many of
these publications have considered Ar-Kr mixtures in
which the mass, diameter, and interaction strength pa-
rameter were all varied at the same time. Therefore it
has not been easy to discern the effects of varying just one
of these parameters. In this study we consider the varia-
tion in the self-diffusion coefficients of a binary mixture of
particles in which the only difference between the two
species is their mass. The diffusion coefficient of particle i
can be computed from the linear region of the mean
square displacement,

o Al =1 0)]?)
D;= lim ,
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(1)

or from the velocity autocorrelation function,

D;=11im [ (v(0)vi(0)(1—s/n)ds , )
3 t—>o Y0

where v; is the velocity of particle i.

It is well known that for dilute gases the ratio of the
self-diffusion coefficients of a binary mixture is equal to
the reciprocal of the square roots of the masses of the two
species. However, machine computations have shown
that in the condensed state this ratio varies more weakly
with mass ratio. For equimolar systems, changing the
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mass of one species has nearly the same effect on the self-
diffusion coefficient of both species. For each species i we
have D;~mpy !/* where mp is the mass of the species
whose mass is varied. There is nevertheless a small
difference in the mass dependence in favor of the species
whose mass is changing. Extensive machine computa-
tions performed by Bearman and Jolly [4] on equimolar
mixtures of LJ isotopes led them to conclude that the ra-
tio of the two species self-diffusion coefficients varied
with mpg according to

—p

DB(mB/m)_ (3)

Ds(mB/m)

mpg

m

where 0.06 =y <0.1 and m is the mass of the other (sol-
vent) species.

These previous simulations were carried out for a limit-
ed range than previously considered of mygz/m values.
The purpose of this study is to consider a much wider
range of mp/m and N values, where N is the total num-
ber of particles in the simulation. The more extreme
values for these parameters help in discerning general
trends and limiting behavior. The average of the squared
momentum of a single solute particle depends on N as fol-
lows [5]:

myg(N —1)m

2y—gpr—2 " "
{p5) mg+m(N—1)’

4)

where T is the temperature of the N —1 solvent mole-
cules. This property of the solute particle has not been
taken into account in previous studies of the mass depen-
dence of self diffusion and is useful in determining the
limiting number of solvent particles needed for the sys-
tem to be in the thermodynamic limit (i.e., when N — o0 ).

2026 ©1995 The American Physical Society



51 MASS DEPENDENCE OF ISOTOPE SELF-DIFFUSION BY . .. 2027

II. THEORETICAL BACKGROUND

The mass dependence of a single massive solute parti-
cle in a host fluid is analyzed in terms of the generalized
Langevin equation (GLE),

mpv()=—my [ 'M(t')v(z —t')dt'+R (1), (5)
0

where R(¢) is a randomly fluctuating force that arises
from collisions with the surrounding molecules, and
M (t’) is the memory function. This memory function is
nonlocal in time and determines the contribution to the
force at time ¢ that is proportional to the velocity at an
earlier time ¢’. Some properties are assumed for the ran-
dom force, such as a zero mean and no correlation with
the velocity, i.e., {R(¢))={(R(¢)-v(z))=0. If we multi-
ply the GLE by v(¢,) and take a time average, we arrive
at an equation for the normalized velocity autocorrela-
tion function ¢(¢), or upon Laplace transformation ¢(s),
in terms of the Laplace transformation of the memory
function M(s). Mori showed that M(s) can be written as
a continued fraction [6], in terms of the damping ma-
trices K, (Mori coefficients), which are the zero-time
values of the memory function M,(0"). The Mori
coefficients can be obtained from the values of the mo-
ments of the time derivatives of the forces as

1 N n n
U= 3 v, ®

i=1

where v represents the nth time derivative of the nor-
malized velocity, and { ) represents the time average. As
can be seen, these Mori coefficients can be calculated
directly from the simulation. If we are interested in the
Brownian particle the two first Mori coefficients are given

by [7]

Kp,=U;=

1 < S o2
Veu(r -)> ) (7
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where u (ry;) is the interaction potential between particle
index 1 (assumed to be the Brownian particle) and j the
index of a host liquid particle 2 <j <N, and

—Ky, . (8)

According to the GLE formalism, the diffusion
coefficient can be obtained from the velocity autocorrela-
tion function as [8]

= KT gy =—KT )
mB 0 mBM(O)

D
As an exact expression for the memory function is not
known for simulation liquids, an assumption is made
about its analytic form. According to Toxvaerd [7,9], as
the isotope mass is increased, a Gaussian term in the
memory function becomes the main contribution to the
memory. Therefore, assuming a Gaussian memory func-
tion as
—Kp,t?/2

M(t)=K31e N (10)

which has a short-time relaxation given by the Gauss-
ian term in the memory expansion, 7~1/2/Kg,. Then,
172

M(0)=f0wM(t)dt=K31 , (11)

_T_
2K g,
and so that the Gaussian contribution to the diffusion
coefficient is

1/2

kT

2K p,
mpKp,

D.=
¢ m

(12)

III. SIMULATION DETAILS

Molecular dynamics calculations have been performed
for several different classes of system. In the first class,
the mass of the Brownian particle was maintained at a
constant value myz = 10m, where m is the mass of the sol-
vent particle, and the size of the system is changed. We
used periodic boundary conditions and chose N=32, 108,
256, 500, 864 and 2916 in order to investigate the system
size dependence of the self-diffusion coefficient. These
simulations were carried out with a WCA potential,
which is a potential formed out of the repulsive part of
the LJ potential truncated at the potential minimum

r =20 [3],
6
LA
r

0 for r >2%¢ .
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g
r

4e +e€ for r <2V

u(r)= (13)

The WCA potential helps us establish the role of the
attractive part of the LJ potential on the Mori coefficient
and thus on the self-diffusion coefficient, enabling us to
compare our results with those found previously [10].
Another advantage of the WCA is that, being shorter
ranged, it is more economical with computer time than
the LJ potential and is just as useful for the purposes of
this work. In order to compare our results with previous
works [9,11,12], we have chosen the state point
kT/€=0.9 and po*=0.75. We only have a single
Brownian particle in our model, and therefore very long
simulations are required to obtain acceptable statistics.
Typical simulations went through ~5X 10° time steps of
h =0.0050(e/m)~ /2. In this study the Brownian parti-
cle has the same diameter as the “solvent” particles. The
interaction potential between all species is that given by
Eq. (13).

In the second class of simulations, the total number of
particles in the system was kept constant at N=256 and
the mass of the Brownian particle was varied. We chose
the values mg/m=1, 4, 10, 16, 20, 30, 40, and 50. In this
series of simulations the interaction potential between all
of the particles was the LJ potential with a cutoff equal to
2.50. The reduced temperature and density were the
same as for the WCA calculations. Typical simula-
tions went through ~3X10° time steps of
h =0.0050(e/m)~ /2. In both cases, the Verlet leapfrog
algorithm was used [13]. To help establish the “infinite”
system’ limit, we have also compared Eq. (4) for different
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systems and mass ratios with the canonical expression for
the squared momentum in the thermodynamic limit given
by

(p})=3kTmy . (14)

A point of importance relating to the simulation of mix-
tures, in which there is a large mass ratio between the
species, is that although the time step must be chosen to
accommodate the lighter particle, the relaxation times as-
sociated with the heavier particle are relatively long com-
pared to that time step. Since the phenomenon studied
relates to the more massive particle, the mean square dis-
placements and time correlation functions need to be fol-
lowed for a relatively large number of time steps (e.g., in
excess of 2000 for m g /m=10).

IV. RESULTS AND DISCUSSION

Table I shows the values of the two first Mori
coefficients needed to calculate the self-diffusion
coefficient in the Gaussian approximation of Eq. (12) for
the WCA liquids. Apart from N=32 to 108, the values
in the columns [especially Dg( T)] are statistically con-
stant, the uncertainties being ca. 2% and independent of
the system size.

Table II shows the results for the N=256 LJ systems,
using several mass ratios. Using the data in the table, we
see that the ratio Kz mp/m is independent of the value
of my /m as predicted in [9]. For example, at mp/m=1,
20, and 50, we have Kzymg/m=232, 224, and 225, re-
spectively. The mean values for K| and K, in the last
row agree with the values obtained in [11], as do the K,
values with those in [12] with a smaller mass ratio
(mp/m=1, 4, 16, and 50). However, the variation in
Kp, between mg/m=1 to 10 is very sharp, the values
here being systematically higher than in our previous
work [12], where it was found that Kz,=352, 370, and
369 for mp/m=4, 16, and 50, respectively (with an un-
certainty of ca. 7%). This systematic discrepancy could
be caused by the different ensembles used in the separate
studies. In the present work, the microcanonical NVE
ensemble has been used [number of particles (N), volume
(P), internal energy (E)], while in Refs. [11] and [12] the
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Nosé-Hoover [14] isothermal-isobaric NPT ensemble was
used. It is interesting to note that in Ref. [9] the micro-
canonical ensemble was also used and the K, values ob-
tained (i.e., 444 and 398 for mp /m=4 and 16, respective-
ly) are in between those obtained here and in our previous
report [12]. Nevertheless, in spite of the differences in
Kp,, the self-diffusion coefficients are relatively insensi-
tive to these differences because 1/ K g, is used in the cal-
culation of the diffusion coefficient in Eq. (12). In the
thermodynamic limit, the Mori theory prediction for D is
0.0632 in the present calculations has the value 0.060 in
Ref. [12] and 0.063 in Ref. [9] for mz /m=16. Moreover,
both studies show that D§(T) in the Gaussian approxi-
mation is not mass dependent for a ratio mg/m > 4.

The ratio of the self-diffusion coefficient of the LJ fluid
compared with that of the WCA fluid gives a direct mea-
sure of the influence of the attractive force on the self-
diffusion coefficient [10]. From our values in Tables I and
11, this ratio is 0.95, which shows that, for the state point
chosen, there is only a small influence of the attractive
part of the potential on the self-diffusion coefficient. Al-
ternatively, the ratio of the relaxation times derived from
the two potentials gives another way of discerning the
role of the attractive part of the potential on the self-
diffusion coefficients of the two systems. Straub showed
that similar relaxation times should also lead to similar
self-diffusion coefficients, which was found to be the case
at high (i.e., liquid) densities [10]. In the present study,
the ratio of the Gaussian relaxation times obtained from
Eq. (12) for LY and WCA fluids is 1.06, which confirms
the small influence of the attractive part of the potential
on the diffusion coefficient at this high fluid density. The
results for these ratios therefore agree with those found in
[10]. For most of our simulations, we use the equally val-
id WCA potential instead of the LJ potential, because its
shorter range makes it more computationally efficient.

The generalization of these results for a Brownian par-
ticle of arbitrary mass immersed in an infinitely large sol-
vent system was derived in a recent paper by Espafiol and
Zutiga [5], who deduced Eq. (4) instead of the usual
canonical result of Eq. (14). The “mass factor” my,
which distinguishes Eq. (4) from Eq. (14), is given by

TABLE 1. Mori coefficients, in units of €/(mo?), and self-diffusion coefficient, in units of o(e/m)!/2,
for the different WCA systems using mz/m=10. The solvent Mori coefficients are K, and K,, and the
Brownian particle Mori coefficients are K, and K,. The self-diffusion coefficient D$(T) has been cal-
culated using the final mean temperature of the simulation k7/e=0.9 in Eq. (12). The last row
represents the mean values of each column and the standard errors are given in parentheses for the last
significant figure. All quantities quoted in this and subsequent tables are in LJ reduced units, o, €, and

m. Time is in units of o(m /€)'/2.

N Kp, Kz, K, K, DE(T)
32 23.9 477.0 2419 756.8 0.0656
108 234 460.6 231.5 756.2 0.0659
256 23.1 465.3 232.7 768.2 0.0671
500 23.1 463.8 231.9 767.2 0.0669
864 234 466.7 232.0 768.6 0.0663
2916 23.0 460.1 229.7 759.8 0.0670
Means 23.3(3) 465.6(5.6) 233.3(4.0) 762.8(5.3) 0.0665(6)
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TABLE II. The same as for Table I but using the LJ system and N=256 particles with different mass
ratios. In the mean value for D§(T) we have omitted the corresponding values for myz /m=1 and 4.

mp/m Kp Kps K, K, Dg(T)
1 231.9 684.8 2323 695.6 0.0810
4 56.7 466.0 230.5 686.4 0.0683
10 225 398.5 227.9 670.3 0.0637
16 14.5 417.9 230.5 685.4 0.0633
20 11.2 396.8 229.7 683.9 0.0639
30 7.5 391.0 228.4 674.6 0.0631
40 5.7 386.2 226.2 662.6 0.0619
50 4.5 390.9 227.2 667.4 0.0631
Means 229.1(1.9) 678.3(10.5) 0.0632(6)
S N—1 (15) tween the Brownian and solvent particles is readily calcu-
SO N—14+m p/m lated. Table III shows the simulation results for the

In the thermodynamic limit, where N — o, we find
that Eq. (14) is recovered. As we are interested in the ap-
proach to the thermodynamic limit, we have applied both
Egs. (14) and (4) to the Brownian and solvent particles. It
is straightforward to derive

_mWN-—1) (16)

(12) mp

Ty
T,

s

where Ty and T, are the “temperatures” associated with
the Brownian and solvent particles, respectively. The
subscript indicates that Eq. (14) has been used. Applying
the same procedure to Eq. (4) one obtains

T, T,
Bl =1+ |2 , (17)
| T T, |
or alternatively in terms of the mass factor as
T / Ty
| Ts | T, |

The theoretical result in Eq. (18) can be directly tested
by computer simulation as the kinetic energy ratio be-

several WCA systems at a given mass ratio of
mp/m=10. The first two columns in the table show that
the ratio T /T, predicted by Eq. (18) is in good agree-
ment with that calculated from the simulation. The
simulation values for T /T, are almost the same as those
calculated using the m, values from Ref. [15]. As we are
simulating the microcanonical ensemble, the T, and the
total energy up remain almost constant, as expected a
priori for both quantities in this ensemble. Also in Table
III are listed the self-diffusion coefficients obtained from
the simulation using several methods. The mean square
displacement method (MSD) for the self-diffusion Djp
gives the same value as when the velocity autocorrelation
function (VACF) method is used. Only the system of
N=32 particles shows a significant difference from the
rest by manifesting a smaller plateau value. For the in-
termediate size systems (N=108 to 500) it is easy to see
that the plateaus show a dependence on system size be-
fore approaching a constant value for the larger systems
(N=2864 and 2916).

In order to calculate the diffusion coefficient using the
Gaussian memory function approach, we have to decide
whetherTy or T, should be used in Eq. (12). Two pros-
pective diffusion coefficients can be defined: D§(Tp) or

TABLE III. WCA simulations using mgz/m=10. Tj is the “temperature” of the Brownian particle
defined from the mean kinetic energy. Ty is the temperature of the solvent particles. Dj is the self-
diffusion coefficient obtained from the simulations using the mean square displacements and velocity
autocorrelation function. D§(Tjp) is the self-diffusion coefficient using the Mori coefficients with a
Gaussian memory function and using T’ for the temperature in Eq. (12). D§(Ts) uses T instead of Ty
in (12), and uj is the average potential energy of the Brownian particle.

Ty /Ts my N Ts up Dy D§(T,) DS(Ts)
0.77(1) 0.7561 32 0.9087(14) 0.633(4) 0.040 0.046 0.066
0.95(1) 0.9145 108 0.9041(8) 0.629(3) 0.060 0.062 0.065
0.96(1) 0.9623 256 0.9163(15) 0.631(5) 0.072 0.065 0.068
0.99(2) 0.9804 500 0.9122(13) 0.629(5) 0.076 0.067 0.068
1.03(2) 0.9886 864 0.9141(12) 0.637(3) 0.088 0.069 0.067
1.01(2) 0.9966 2916 0.8996(9) 0.622(3) 0.085 0.068 0.067
Means 0.909(6) 0.630(5) 0.067(1)
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TABLE IV. LJ simulations using N=256 particles and different mass ratios. Other details as for
Table III. White spaces mean that the plateau has not been reached.
Tg/Ts my mg/m Ts ug Dy D§(Ty) Df(Ts)
1.01(1) 0.9961 1 0.8933(2) —4.50(1) 0.068 0.081 0.080
0.99(1) 0.9846 4 0.9053(2) —4.51(1) 0.062 0.068 0.069
0.97(3) 0.9622 10 0.8956(2) —4.50(1) 0.058 0.062 0.063
0.97(1) 0.9410 16 0.9238(5) —4.48(1) 0.057 0.062 0.064
0.87(2) 0.9273 20 0.8915(3) —4.50(2) 0.044 0.055 0.063
0.88(3) 0.8947 30 0.9064(3) —4.50(1) 0.056 0.063
0.90(3) 0.8644 40 0.8891(3) —4.50(1) 0.055 0.061
0.84(2) 0.8361 50 0.8991(2) —4.51(1) 0.052 0.063
Means 0.90(1) —4.50(1) 0.063(1)
DF(T,). While DS(Ty) shows a similar but smoother  D$(T,) values are not the same. The most direct method

behavior to the directly computed value Dy, the DS(T,)
coefficient can be considered more invariant with system
size even for N=32. Accordingly, with the Tp and T,
values in the table, one should expect a constant D 36( Tg)
that is equal to DS(T,) in the limit case of N— co. This
is, in fact, what we find in the N=2916 row of Table III,
which confirms that the simulation data are in agreement
with the theory [5].

For a given LJ system of N=256 particles and different
mass ratios, Table IV confirms that the value of (T3 /T)
decreases with increase in mass ratio, according to Eq.
(16). Comparing Tables III and IV, one can see that, as
expected, even though the two interaction potentials are
different, the same trend is observed. The direct method
of computing the self-diffusion coefficient (MSD or
VACEF) produces a well defined plateau value for the first
five values of my/m in Table IV. A plateau in Dg(?) is
reached, the values of which go down with the increasing
of mass ratio. However, we found that the three more
massive Brownian particles do not achieve a limiting
value within the duration of our VACF and MSD, so we
were unable to assign a value for the self-diffusion
coefficient for these states. From the Tz and T values in
the table there is evident a constant DF(T,) and a
Df(Tp)—0 in the limiting case of mp /m — o, in agree-
ment with Ref. [5]. However, note that even DS(T,) is
affected for the two smaller mass ratios, only tending to a
constant value for myz/m = 10.

In Tables IIT and IV we see that in general the Dy and

of calculating the self-diffusion coefficient of a Brownian
particle is by means of the MSD of the particles, and any
of the other methods in use (as the VACF method) must
give, in principle, the same results. However, the GM
approximation should dominate for large isotope masses
[9] and in some sense should be more reliable for large
Brownian particle mass (bearing in mind the noted
difficulty in obtaining a plateau value by the direct
method for large mass). Nevertheless, one would expect
that both routes should lead to the same value for the
self-diffusion coefficient. What is evident from the values
in the tables is that the results with both techniques do
not in general agree. There are several possible origins
for this discrepancy. For example, the MSD technique or
the methods based on the GM technique (or both) could
be subject to finite N effects or inappropriate when ap-
plied to such small systems and/or light Brownian parti-
cles. To check this possibility, we have performed fur-
ther calculations for much larger systems and more
massive Brownian masses, trying to find if there exists a
minimum value for the system size and for the Brownian
mass in which the self-diffusion calculated by both routes
give, within statistical uncertainty, the same values.
Table V shows the results for the WCA simulation for the
chosen system and mass ratios. The MSD method for
N=500 particles and a mass ratio of mp/m=15 gives
the same value for the self-diffusion coefficient as for
mp/m=10 in Table III, but it is still different from the
GM method. However, using mg/m =25, both methods

TABLE V. WCA simulations for the larger systems and mass ratios. Other details are as for Tables
I-1IV. Now the Dy values are the results with the mean square displacement method. In the means,

the first smaller system has been omitted.

Ty /Ts my N mg/m Ts Ky, Ky, Dy D§(Ts)
0.96(2) 0.9708 500 15 0.925(1) 1540 4584 0.076 0.068
0.92(3) 0.9523 500 25 0.8831(5) 9.02  430.7 0.064 0.065
0.96(3) 0.9664 864 30 0.913(1) 7.80  446.8 0.069 0.066
0.94(3) 0.9717 1372 40 0.910(1) 584 4435 0.068 0.065
0.96(4) 0.9762 2048 50 0.899(1) 459  429.7 0.070 0.065
Means 0.90(1) 437.7(7.6)  0.068(2)  0.065(1)
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lead to the same value for the self-diffusion coefficient.
This agreement is maintained for larger systems and for
more massive Brownian particles and, moreover, the
values obtained are almost constant for all the systems of
N =500 particles and mass ratios of myz/m =25. Conse-
quently, within the simulation statistical uncertainty, the
MSD and the GM methods give the same value for the
self-diffusion coefficient of the Brownian particle, which
does not depend on the number of solvent molecules nor
on the mass of the Brownian particle, provided N and my
are sufficiently large. The values obtained by the VACF
method are similar to those using the MSD method for
the first two systems, but for the other three systems they
present a parallel behavior to the MSD method with
slightly greater values. This behavior could possibly be
caused by the approximate representation of the particle
velocity in the leap-frog algorithm, which could be im-
proved upon using a more accurate algorithm [15].

V. CONCLUSIONS

In summary, in the WCA system for a wide number of
systems (from N=32 to 2916) and for a given value of
mass ratio of myp/m=10, the Mori coefficients and the
self-diffusion coefficient are independent of system size
(Table I). Moreover, in a fixed LJ system of N=256 par-
ticles, with varying mass ratio from my/m=1 to 50, the
self-diffusion coefficient does not depend on the mass of
the Brownian particle for myz/m = 10 values (Table II).
This conclusion is not affected by the ensemble used,
whether microcanonical or isothermal-isobaric. From
both tables one can notice that the attractive part of the
potential, included in the LJ potential and omitted in the
WCA potential, diminishes somewhat the self-diffusion
coefficient [10]. In other words, the weak long ranged at-
tractive part of the potential tends to retard the Browni-
an particle in the solvent.

As the computer simulation experiments are limited to
finite system size far from the thermodynamic limit, any
generalization from particular results is not within risk.
In this sense, we have used Egs. (4) and (14), which are
valid for systems with a finite and infinite number of par-
ticles, respectively. Their comparison is a measure of
how far a system is from the thermodynamic limit and
thus how the behavior of a finite system simulated can be
generalized to larger systems. From our results of
Ty /T, compared with the theoretical value given by the
mass factor m, one can conclude that the thermodynam-
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ic limit can, in fact, be very closely reached for very small
systems (note, for example, how close to unity is the m Y
value in Table III for N=2916). This result reminds us of
a similar conclusion obtained in path integral theory in
which the equivalence between a semiquantum particle
and a ring polymer of P beads is theoretically reached
when P— oo, but in many of the practical cases this
equivalence is reached at a very low number of beads
(P <30, see for example [16]). Then one can estimate
that the GLE, given by Eq. (5), is valid for large enough
Brownian particle mass independent of system size.
Moreover, if the Gaussian memory function Eq. (12) is
considered to be valid for the self-diffusion coefficient,
then, according to our results, this coefficient should not
depend on solute mass or system size. That is, a Browni-
an particle should have a unique self-diffusion coefficient
at a given density and temperature, no matter how
massive the Brownian particle is and how many particles
there are in the solvent system if they are larger than crit-
ical values. This conclusion can be considered to be in
agreement with [5,9], in which the mass of the Brownian
particle and the number of solvent particles were as-
sumed to be infinity, as being the only “state’ having a
nonzero value for the friction coefficient by the force au-
tocorrelation function route [5], and with the former con-
clusion, which states that the Gaussian memory dom-
inates at high mass ratio [9].

An interesting generalization, which would also further
check this conclusion, to be taken into account in a fu-
ture study is to calculate the first two Mori coefficients
for several state points (7,p) in order to obtain an analyt-
ical behavior for these coefficients, in a similar way to the
procedure of [17] for the mass and volume changes of the
Brownian particle. Then the results should be compared
with previous extensive studies for different state points
[18,19]. In this way, in the Gaussian approximation, the
self-diffusion coefficients and other directly related
coefficients, such as the friction coefficient, would be
known approximately a priori if a functional form were
found for those Mori coefficients.
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